On the Homothety Conjecture ∗

نویسندگان

  • Elisabeth M. Werner
  • Deping Ye
چکیده

Let K be a convex body in R and δ > 0. The homothety conjecture asks: Does Kδ = cK imply that K is an ellipsoid? Here Kδ is the (convex) floating body and c is a constant depending on δ only. In this paper we prove that the homothety conjecture holds true in the class of the convex bodies B p , 1 ≤ p ≤ ∞, the unit balls of l p ; namely, we show that (B p )δ = cB p if and only if p = 2. We also show that the homothety conjecture is true for a general convex body K if δ is small enough. This improvs earlier results by Schütt and Werner [16] and Stancu [20].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinear Forms on Frobenius Algebras

We analyze the homothety types of associative bilinear forms that can occur on a Hopf algebra or on a local Frobenius k-algebra R with residue field k. If R is symmetric, then there exists a unique form on R up to homothety iff R is commutative. If R is Frobenius, then we introduce a norm based on the Nakayama automorphism of R. We show that if two forms on R are homothetic, then the norm of th...

متن کامل

Addition and Subtraction of Homothety Classes of Convex Sets

Let SH denote the homothety class generated by a convex set S ⊂ R: SH = {a + λS | a ∈ R, λ > 0}. We determine conditions for the Minkowski sum BH + CH or the Minkowski difference BH ∼ CH of homothety classes BH and CH generated by closed convex sets B,C ⊂ R to lie in a homothety class generated by a closed convex set (more generally, in the union of countably many homothety classes generated by...

متن کامل

Origin–symmetric Bodies of Revolution with Minimal Mahler Volume in R3 –a New Proof

In [22], Meyer and Reisner proved the Mahler conjecture for rovelution bodies. In this paper, using a new method, we prove that among origin-symmetric bodies of revolution in R 3 , cylinders have the minimal Mahler volume. Further, we prove that among parallel sections homothety bodies in R3 , 3-cubes have the minimal Mahler volume. Mathematics subject classification (2010): 52A10, 52A40.

متن کامل

A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

‎The excessive index of a bridgeless cubic graph $G$ is the least integer $k$‎, ‎such that $G$ can be covered by $k$ perfect matchings‎. ‎An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless‎ ‎cubic graph has excessive index at most five‎. ‎Clearly‎, ‎Petersen graph is a cyclically 4-edge-connected snark with excessive index at least 5‎, ‎so Fouquet and Vanherpe as...

متن کامل

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010